Tetrahedron Letters 51 (2010) 2868-2871

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Development and photo-responsive peptide bond cleavage reaction of two-photon near-infrared excitation-responsive peptide

Akira Shigenaga^{a,*}, Jun Yamamoto^a, Yoshitake Sumikawa^a, Toshiaki Furuta^b, Akira Otaka^{a,*}

^a Institute of Health Biosciences and Graduate School of Pharmaceutical Sciences, The University of Tokushima, Shomachi, Tokushima 770-8505, Japan ^b Department of Biomolecular Science and Research Center for Materials with Integrated Properties, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

ARTICLE INFO

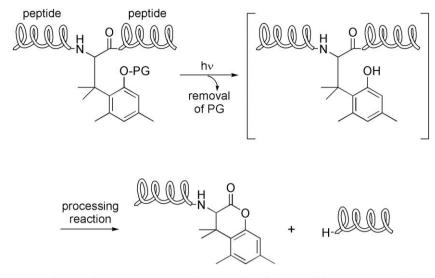
Article history: Received 3 March 2010 Revised 18 March 2010 Accepted 19 March 2010 Available online 23 March 2010

ABSTRACT

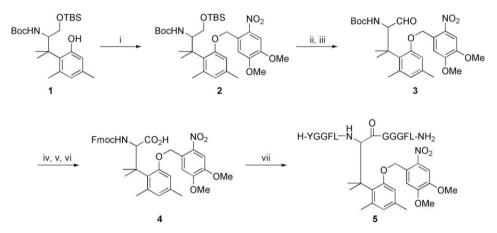
Two-photon near-infrared excitation-responsive amino acid was developed. It was incorporated into a peptide, and focused near-infrared pulsed laser irradiation-induced peptide bond cleavage reaction at the C-terminal position of the photo-responsive amino acid was observed. © 2010 Elsevier Ltd. All rights reserved.

Development of a method to control the function of peptide or protein in a spatiotemporal manner is indispensable in the field of chemical biology and drug delivery. Ultraviolet (UV) irradiation-induced bond cleavage reaction or conformational change of peptide/ protein backbone has been successfully applied in order to control function.¹ However, UV irradiation sometimes causes serious damage to living organisms, and one-photon UV photolysis occurs at a whole optical path without three-dimensional spatial precision. Near-infrared (NIR) two-photon photolysis can overcome these problems because NIR, which has a wavelength longer than that of UV, is less damaging to cells compared with UV, and simultaneous absorption of two photons occurs only at the point of focus of a femtosecond pulsed laser with three-dimensional precision.² To our knowledge, however, peptide bond cleavage reaction triggered by NIR two-photon photolysis has yet to be reported. Previously, we reported a stimulus-responsive processing (peptide bond cleavage) device and its application for controlling peptidyl function in living cells.³ In this Letter, we describe the development and photo-reactivity of an NIR two-photon excitation (2PE)responsive processing device which induces a peptide bond cleavage reaction after exposure to a focused NIR pulsed laser.

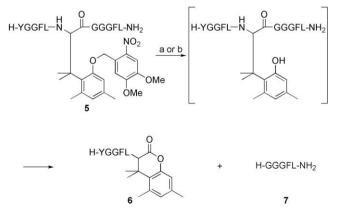
In the UV one-photon excitation (1PE)-responsive system developed by our group,^{3b,3c} UV-induced removal of protective group (PG) on the phenolic hydroxyl group of a trimethyl lock moiety⁴ triggers a processing reaction as shown in Scheme 1 (PG = *o*-nitrobenzyl). Therefore, we attempted to introduce a 2PE-responsive protective group, which can be cleaved by NIR two-photon absorption, at the PG position. NIR 2PE-responsive protective groups such as Bhc group,^{5,6} quinoline derivatives,⁷ nitroindoline derivatives,⁸ and *o*-nitrobenzyl derivatives^{9,10} have been extensively studied to date. A 4,5-dimethoxy-2-nitrobenzyl group was originally developed by Patchornik et al. as a UV


1PE-responsive protective group,¹¹ and it has recently been applied as an NIR 2PE-responsive caged compound to control the function of living cells.¹⁰ Because of its stability and ease of preparation, we attempted to introduce a 4,5-dimethoxy-2-nitrobenzyl group at the PG position.

Fmoc-protected 2PE-responsive amino acid **4** possessing a 4,5dimethoxy-2-nitrobenzyl group at the PG position was synthesized as shown in Scheme 2. Phenol 1^{3b} was alkylated with 1-(bromomethyl)-4,5-dimethoxy-2-nitrobenzene¹² in the presence of K₂CO₃ to afford 4,5-dimethoxy-2-nitrobenzyl ether **2**. After removal of the TBS group of **2** under acidic conditions, the generated hydroxyl group was oxidized with PDC to give aldehyde **3**. After oxidation of aldehyde **3** with sodium chlorite, the Boc group on the obtained carboxylic acid derivative was replaced with Fmoc group by acid treatment, followed by reaction with FmocOSu to generate Fmoc-protected 2PE-responsive amino acid **4**. The total yield of amino acid derivative **4** amounted to 72% over six steps beginning from phenol **1**. Finally, amino acid **4** was incorporated in model peptide **5** using Fmoc solid phase peptide synthesis (Fmoc SPPS) to examine its photo-reactivity.

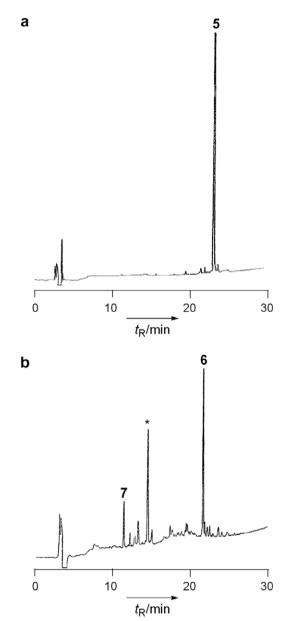

Next, the photo-responsive processing reaction of peptide 5 was examined (Scheme 3). Prior to the two-photon NIR absorption experiment, we performed a one-photon UV absorption experiment to characterize processing products and to estimate photophysical properties of peptide 5. Diastereomerically purified peptide **5**¹³ in phosphate buffer (pH 7.6, 20 mM) with 50% v/v acetonitrile was irradiated by UV (>365 nm) for 3 min, and the reaction mixture was incubated at 37 °C. Reaction progress was monitored by HPLC, and the peptides were characterized by electrospray ionization mass spectrometry (ESI-MS). After 4 h of incubation, peptide 5 was completely converted to corresponding processing products 6 and 7 as shown in Figure 1. Next, the time course for photolysis of peptide 5 by irradiation with 365 nm UV light $(1.41 \times 10^{16} \text{ photon s}^{-1})$ was monitored. As shown in Figure 2a, the uncaging (photo-induced removal of 4,5-dimethoxy-2-nitrobenzyl group) reaction of peptide 5 shows first-order dependence

^{*} Corresponding authors.

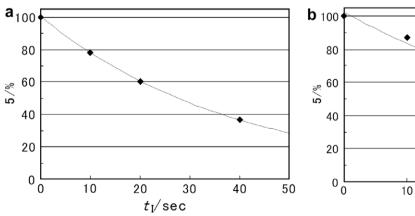

E-mail addresses: ashige@ph.tokushima-u.ac.jp (A. Shigenaga), aotaka@ph.tokushima-u.ac.jp (A. Otaka).

Scheme 1. Photo-responsive processing system (PG: photo-removable protective group).

Scheme 2. Reagents and conditions: (i) 1-bromomethyl-4,5-dimethoxy-2-nitrobenzene,¹² K₂CO₃, DMF, 97%; (ii) AcOH, H₂O, THF, 96%; (iii) PDC, CH₂Cl₂, 82%; (iv) NaClO₂, 2-methyl-2-butene, NaH₂PO₄, acetone, *tert*-BuOH, H₂O; (v) HCl, 1,4-dioxane; (vi) FmocOSu, Na₂CO₃, acetonitrile, H₂O, 94% (three steps); (vii) Fmoc SPPS.



Scheme 3. Reagents and conditions: (a) UV irradiation (>365 nm), 50% v/v acetonitrile in phosphate buffer (pH 7.6, 20 mM). (b) NIR pulsed laser irradiation (740 nm), 50% v/v acetonitrile in phosphate buffer (pH 7.6, 20 mM).


on the concentration of peptide **5**. Quantum yield of peptide **5** for UV 1PE was then estimated based on the decay curve and the extinction coefficient of **5**; results are summarized in Table 1. Compared with reference compound **8**,⁶ⁱ which also possesses a

4,5-dimethoxy-2-nitrobenzyl group, the extinction coefficient of peptide **5** at 365 nm (ε_{365}) is similar to that of **8**, whereas quantum yield of disappearance of **5** (Φ_{365}) is higher than that of **8**. The reason for this high quantum yield is not clear at present; however, it might be due to the influence of a peptide moiety and not by the solvent effect.¹⁴ Actually, the photophysical parameters (ε_{365} and Φ_{365}) of **8** in 50% v/v acetonitrile in phosphate buffer (pH 7.6, 20 mM) were estimated as 5063 M⁻¹ cm⁻¹ and 0.003, respectively. These values are almost identical to that in K-MOPS buffer; therefore, no obvious solvent effect on the photophysical parameters was observed under these conditions.

These results encouraged us to examine an NIR two-photon absorption experiment. Two-photon excitation reaction of peptide **5** using a focused NIR pulsed laser was examined as shown in Scheme 3b. Solution of peptide **5** in 50% v/v acetonitrile/phosphate buffer (pH 7.6, 20 mM) was irradiated with a focused NIR pulsed laser (740 nm, 3.48×10^{12} photon s⁻¹), and the time course concentration of peptide **5** was monitored by HPLC. Based on the decay curve of peptide **5** depicted in Figure 2b, two-photon uncaging action cross-section at 740 nm (δ_{u740}) was estimated as 0.23 GM (Goeppert-Meyer, 1 GM = 010⁻⁵⁰ cm⁴ s photon⁻¹) (Table 1). This δ_{u740} value is higher than that reported for 4,5-dimethoxy-2-nitrobenzyl derivatives including reference compound **8**,^{6i,15} presum-

Figure 1. HPLC profiles (a) before and (b) after 3 min of UV irradiation followed by 4 h of incubation at 37 °C. Peptides were detected by UV absorbance at 220 nm. Asterisked peak is 4,5-dimethoxy-2-nitrosobenzaldehyde derivative generated by photolysis of 4,5-dimethoxy-2-nitrobenzyl group.

Table 1

Photophysical properties of photo-responsive compounds

	5 ^a	8 ^b	
$\delta_{365}^{c}{}_{d} \Phi_{365}^{c}{}_{d} \Phi_{6365}^{c}{}_{d} \Phi_{6365}^{c}{}_{u740}^{c}$	5890 0.080 471 0.23	5200 0.005 26 0.03	

^a Solvent: 50% v/v acetonitrile in phosphate buffer (pH 7.6, 20 mM).

^b Solvent: K-MOPS buffer (pH 7.2, 10 mM MOPS, 100 mM KCl). Values taken from the literature.⁶ⁱ

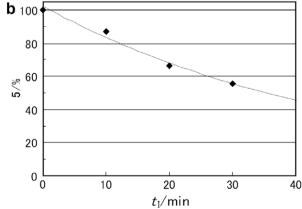
^c Molar absorptivity at 365 nm (M⁻¹ cm⁻¹).

^d Quantum yield of disappearance of starting materials upon 365 nm irradiation.

 $^{\rm e}$ Product of photolysis quantum yield and molar absorptivity at 365 nm $(M^{-1}\,cm^{-1}).$

^f Two-photon uncaging action cross-section at 740 nm (GM).

ably due to the high quantum yield of peptide **5** as mentioned above. According to the literature,⁶ⁱ a δ_u value exceeding 0.1 GM is preferred for biological application of 2PE-responsive caged compounds. Therefore, the NIR 2PE-responsive processing system reported here can be potentially applicable for biological studies.


In conclusion, we developed a two-photon NIR excitationresponsive peptide. The peptide bond at the C-terminal position of the photo-responsive amino acid was successfully cleaved by irradiation of a focused NIR pulsed laser at 740 nm to yield the processing products, and the δ_{u740} value was sufficient for application in biological studies. To our knowledge, this is the first example of a peptide bond cleavage reaction triggered by NIR two-photon excitation.¹⁶ Applications of this unprecedented NIR 2PE-responsive processing device for spatiotemporal control of peptide/protein function in living cells are in progress.

Acknowledgments

This research was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI), Takeda Science Foundation, The Science and Technology Foundation of Japan and Nagase Science and Technology Foundation.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.03.079.

Figure 2. Time course for photolysis of peptide **5** under (a) UV at 365 nm (light intensity: 1.41×10^{16} photon s⁻¹). (b) NIR pulsed laser at 740 nm (light intensity: 3.48×10^{12} photon s⁻¹). Solid lines are least-squares fits of simple decaying exponentials.

References and notes

- 1. For recent application of UV-induced bond cleavage or conformational change of peptide/protein backbone, see: (a) Eastwood, A. L.; Blum, A. P.; Zacharias, N. M.; Dougherty, D. A. J. Org. Chem. 2009, 74, 9241-9244; (b) Peters, F. B.; Brock, A.; Wang, J. Y.; Schultz, P. G. Chem. Biol. **2009**, 16, 148–152; (c) Celie, P. H. N.; Toebes, M.; Rodenko, B.; Ovaa, H.; Perrakis, A.; Schumacher, T. N. M. J. Am. Chem. Soc. 2009, 131, 12298-12304; (d) Vila-Perelló, M.; Hori, Y.; Ribó, M.; Muir, T. W. Angew. Chem., Int. Ed. 2008, 47, 7764-7767; (e) Kneissl, S.; Loveridge, E. J.; Williams, C.; Crump, M. P.; Allemann, R. K. ChemBioChem **2008**, 9, 3046-3054; (f) Taniguchi, A.; Skwarczynski, M.; Sohma, Y.; Okada, T.; Ikeda, K.; Prakash, H.; Mukai, H.; Hayashi, Y.; Kimura, T.; Hirota, S.; Matsuzaki, K.; Kiso, Y. *ChemBioChem* **2008**, 9, 3055–3065; (g) Katayama, K.; Tsukiji, S.; Furuta, T.: Nagamune, T. Chem. Commun. **2008**. 5399–5401: (h) Li, H.: Hah, I.-M.: Lawrence, D. S. J. Am. Chem. Soc. 2008, 130, 10474-10475; (i) Parker, L. L.; Kurutz, J. W.; Kent, S. B. H.; Kron, S. J. Angew. Chem., Int. Ed. 2006, 45, 6322-6325; (j) Renner, C.; Moroder, L. ChemBioChem 2006, 7, 868-878; (k) Sohma, Y.; Kiso, Y. ChemBioChem 2006, 7, 1549-1557; (1) Toebes, M.; Coccoris, M.; Bins, A.; Rodenko, B.; Gomez, R.; Nieuwkoop, N. J.; Kasteele, W. v. d.; Rimmelzwaan, G. F.; Haanen, J. B. A. G.; Schumacher, T. N. M. *Nat. Med.* **2006**, *12*, 246–251; (m) Pellois, J.-P.; Muir, T. W. *Angew. Chem., Int. Ed.* **2005**, *44*, 5713–5717; (n) Dos Santos, S.; Chandravarkar, A.; Mandal, B.; Mimna, R.; Murat, K.; Saucede, L.; Tella, P.; Tuchscherer, G.; Mutter, M. J. Am. Chem. Soc. 2005, 127, 11888–11889: (o) Endo, M.; Nakayama, K.; Kaida, Y.; Majima, T. Angew. Chem., Int. Ed. 2004, 43, 5643-5645; (p) Bosques, C. J.; Imperiali, B. J. Am. Chem. Soc. 2003, 125, 7530-7531; (q) England, P. M.; Lester, H. A.; Davidson, N.; Dougherty, D. A. Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 11025-11030.
- 2. McCray, J. A. Methods Enzymol. 1998, 291, 175-202. and references cited therein.
- a Shigenaga, A.; Yamamoto, J.; Hirakawa, H.; Ogura, K.; Maeda, N.; Morishita, K.; Otaka, A. Tetrahedron Lett. **2010**, *51*, 2525–2528; (b) Shigenaga, A.; Yamamoto, J.; Hirakawa, H.; Yamaguchi, K.; Otaka, A. Tetrahedron **2009**, *65*, 2212–2216; (c) Shigenaga, A.; Tsuji, D.; Nishioka, N.; Tsuda, S.; Itoh, K.; Otaka, A. ChemBioChem **2007**, *8*, 1929–1931.
- (a) Jung, M. E.; Piizzi, G. Chem. Rev. 2005, 105, 1735–1766. and references cited therein; (b) Milstien, S.; Cohen, L. A. Proc. Natl. Acad. Sci. U.S.A. 1970, 67, 1143– 1147.
- Furuta, T. In Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules; Goeldner, M., Gibens, R. S., Eds.; Wiley-VCH: New York, 2005; pp 29–54.
- (a) Kawakami, T.; Cheng, H.; Hashiro, S.; Nomura, Y.; Tsukiji, S.; Furuta, T.; Nagamune, T. *ChemBioChem* **2008**, *9*, 1583–1586; (b) Furuta, T.; Watanabe, T.; Tanabe, S.; Sakyo, J.; Matsuba, C. *Org. Lett.* **2007**, *9*, 4717–4720; (c) Goard, M.; Aakalu, G.; Fedoryak, O. D.; Quinonez, C.; St. Julien, J.; Poteet, S. J.; Schuman, E.

M.; Dore, T. M. *Chem. Biol.* **2005**, *12*, 685–693; (d) Furuta, T.; Takeuchi, H.; Isozaki, M.; Takahashi, Y.; Kanehara, M.; Sugimoto, M.; Watanabe, T.; Noguchi, K.; Dore, T. M.; Kurahashi, T.; Iwamura, M.; Tsien, R. Y. *ChemBioChem* **2004**, *5*, 1119–1128; (e) Ando, H.; Furuta, T.; Okamoto, H. *Methods Cell Biol.* **2004**, *77*, 159–171; (f) Furuta, T.; Noguchi, K. *TrAC*, *Trends Anal. Chem.* **2004**, *23*, 511–519; (g) Suzuki, A. Z.; Watanabe, T.; Kawamoto, M.; Nishiyama, K.; Yamashita, H.; Iwamura, M.; Furuta, T. *Org. Lett.* **2003**, *5*, 4867–4870; (h) Ando, H.; Furuta, T.; Tsien, R. Y.; Okamoto, H. *Nat. Genet.* **2001**, *28*, 317–325; (i) Furuta, T.; Wang, S. S.-H.; Dantzker, J. L.; Dore, T. M.; Bybee, W. J.; Callaway, E. M.; Denk, W.; Tsien, R. Y. *Proc. Natl. Acad. Sci. U.S.A.* **1999**, *96*, 1193–1200.

- (a) Davis, M. J.; Kragor, C. H.; Reddie, K. G.; Wilson, H. C.; Zhu, Y.; Dore, T. M. J. Org. Chem. 2009, 74, 1721–1729; (b) Zhu, Y.; Pavlos, C. M.; Toscano, J. P.; Dore, T. M. J. Am. Chem. Soc. 2006, 128, 4267–4276; (c) Fedoryak, O. D.; Dore, T. M. Org. Lett. 2002, 4, 3419–3422.
- Matsuzaki, M.; Ellis-Davies, G. C. R.; Nemoto, T.; Miyashita, Y.; Iino, M.; Kasai, H. Nat. Neurosci. 2001, 4, 1086–1092.
- 9. Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73-76.
- For recent application of a 4,5-dimethoxy-2-nitrobenzyl group as a 2PE-responsive caging group in a biological study, see: (a) Neveu, P.; Aujard, I.; Benbrahim, C.; Saux, T. L.; Allemand, J.-F.; Vriz, S.; Bensimon, D.; Jullien, L. Angew. Chem., Int. Ed. 2008, 47, 3744–3746; (b) Dakin, K.; Li, W.-H. Cell Calcium 2007, 42, 291–301; (c) Zhao, J.; Gover, T. D.; Muralidharan, Ş.; Auston, D. A.; Weinreich, D.; Kao, J. P. Y. Biochemistry 2006, 45, 4915–4926 ; (d) Kantevari, S.; Hoang, C. J.; Ogrodnik, J.; Egger, M.; Niggli, E.; Ellis-Davies, G. C. R. ChemBioChem 2006, 7, 174–180; (e) Brown, E. B.; Shear, J. B.; Adams, S. R.; Tsien, R. Y.; Webb, W. W. Biophys. J. 1999, 76, 489–499.
- 11. Patchornik, A.; Amit, B.; Woodward, R. B. J. Am. Chem. Soc. **1970**, 92, 6333–6335. 12. Wilcox, M.; Viola, R. W.; Johnson, K. W.; Billongton, A. P.; Carpenter, B. K.;
- McCray, J. A.; Guzikowski, A. P.; Hess, G. P. J. Org. Chem. 1990, 55, 1585–1589.
 Because racemic Fmoc amino acid 4 was used for Fmoc SPPS, diastereomeric mixture of peptide 5 was generated. These diastereomers were separated by
- HPLC and the peptide eluted earlier was used for subsequent photolysis experiment.
 14. A quantum yield of disappearance of Bz-Gly-ODMNB (DMNB: 4,5-dimethoxy-2-nitrobenzyl) in 3:2 acetonitrile/water was reported as 0.08: Singh, A. K.;
- Khade, P. K. *Tetrahedron* 2005, 61, 10007–10012.
 Aujard, I.; Benbrahim, C.; Gouget, M.; Ruel, O.; Baudin, J.-B.; Neveu, P.; Jullien, L. Chem. Eur. J. 2006, 12, 6865–6879.
- 16. A referee pointed out that our approach brings together two previously known things; a stimulus-responsive peptide bond cleavage device³ and a 2PE-responsive protective group.^{10,11} However, we think that combination of these two is novel, and the resulting 2PE-responsive peptide bond cleavage system with potential applicability for biological studies is unprecedented.